

Implementation of WBG devices in circuits, circuit topology, system integration as well as SiC devices

Principal Investigator: Prof. Anant Agarwal

Co-Investigator: Prof. Jin Wang

The Ohio State University

Department of Electrical and Computer Engineering

Center for High Performance Power Electronics

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project start: April 01, 2019
- Project end: March 31, 2024
- Percent Complete: 60%

Budget

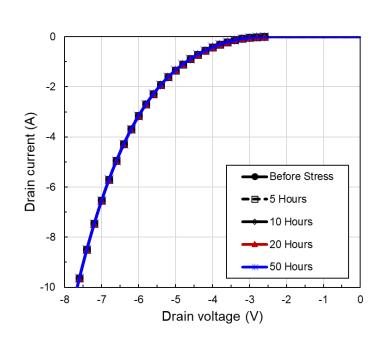
- Total project funding: \$ 1.5 M
- BP1 funding: \$ 300 KBP2 funding: \$ 300 KBP3 funding: \$ 300

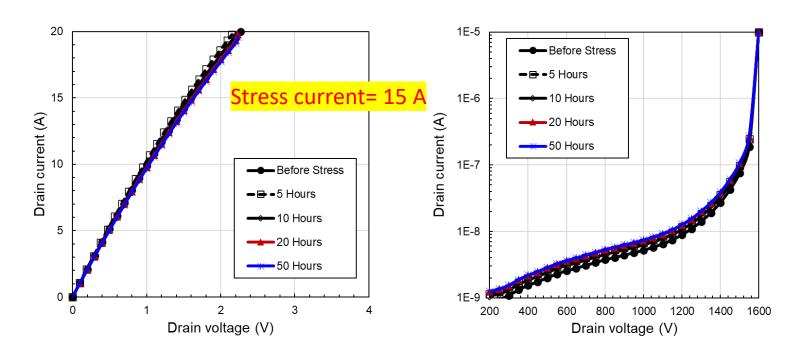
Barriers

- Commercial devices are not ready for insertion into a vehicle power train for long operational life.
- A comprehensive reliability study will be undertaken for currently available commercial devices and better devices will be designed.

Partners

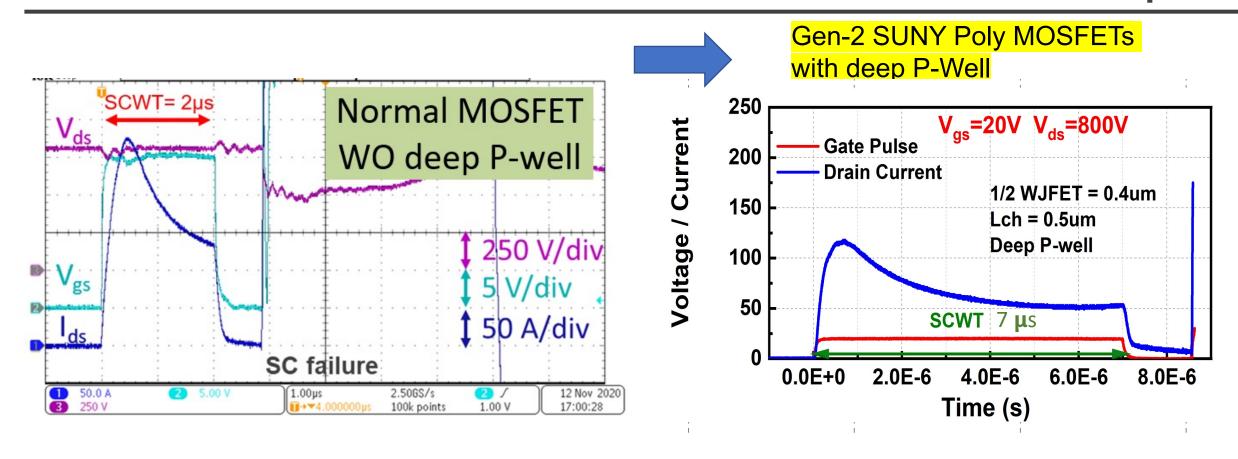
- Sandia National Laboratories
- SUNY POLYTECHNIC INSTITUTE,
 Albany, NY


Project Objectives:

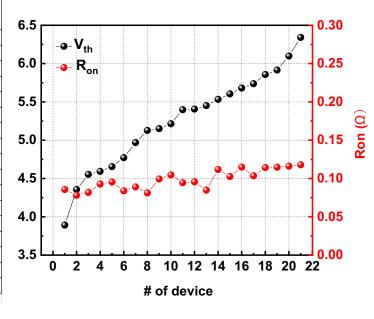

- -The advanced SiC MOSFETs are built every year by SUNY POLY.
- -OSU is testing above MOSFETs as (1) stand-alone, (2) in a 10 kW inverter.

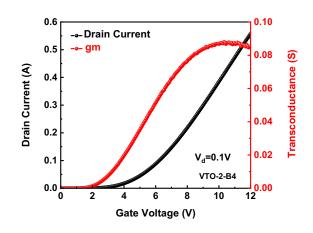
Deliverables so far:

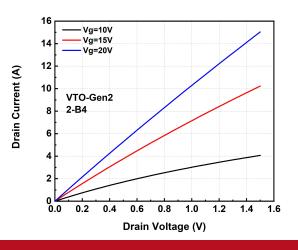
- Room Temperature Implants can be used w/o body diode degradation for 1200 V MOSFETs. 30% cost reduction.
- 7 μs SCWT without any performance penalty. Commercial devices range from 2-4 μs.
- -10 kVA inverter with 77 kVA/L and peak η of 98.8% has been developed to evaluate SiC MOSFETs from SUNY POLY.

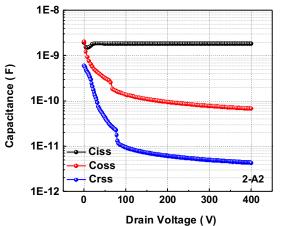

All tested Gen-2 devices with RT implants didn't show any body diode degradation

Room Temperature Implants can be used w/o body diode degradation for 1200 V MOSFETs – 30% cost savings

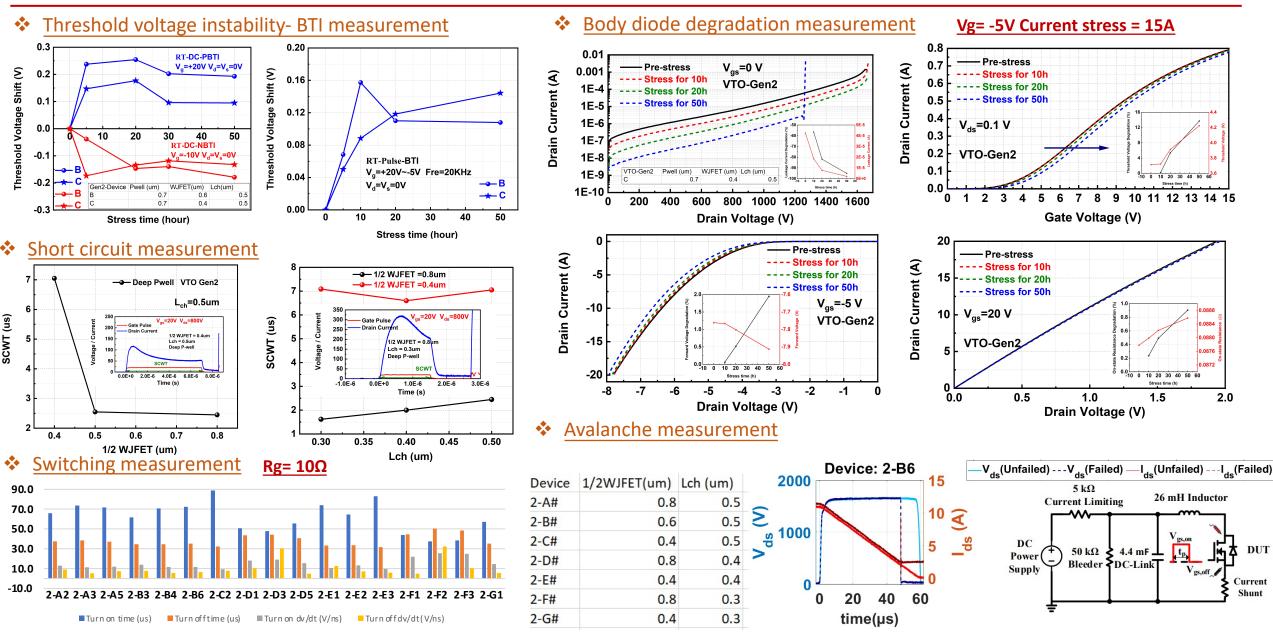

Short Circuit Withstand Time has been increased to 7 µs




Deep p-well improves Short Circuit Withstand Time (SCWT) to 7 μ s This represents major technical breakthrough

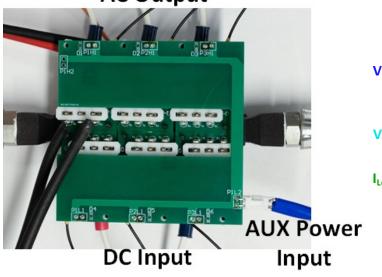

Technical Accomplishments and Progress

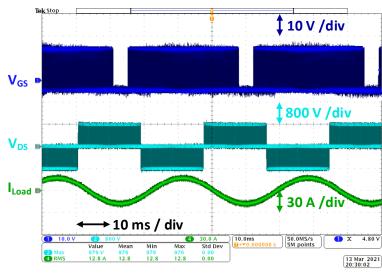
Device	#	Channel length (um)	1/2JFET width (um)	Vth (V)	Ron (Ω)	Ciss (F @ Vds=400V)	Coss (F @ Vds=400V)	Crss (F @ Vds=400V)
· · · · · · · · · · · · · · · · · · ·	VTO-2-A2	0.5	0.8	5.915868747	0.114765347	1.82063E-09	6.710E-11	4.30E-12
VTO-Gen2	VTO-2-A2	0.5	0.8	6.34166167	0.117879836	1.83182E-09	6.69000E-11	4.15E-12
	VTO-2-A5	0.5	0.8	6.098491768	0.116158045	1.81468E-09	8.63000E-10	3.79E-12
	VTO-2-B3	0.5	0.6	5.680990623	0.114809142	1.8496E-09	6.79000E-10	3.95E-12
	VTO-2-B4	0.5	0.6	5.604473233	0.102570975	1.79631E-09	6.64000E-11	3.12E-12
	VTO-2-B6	0.5	0.6	5.736885747	0.103584012	1.80539E-09	6.70000E-11	4.36E-12
	VTO-2-C2	0.5	0.4	5.214740832	0.104714557	1.77019E-09	6.60000E-11	1.77E-12
	VTO-2-D1	0.4	0.8	5.406413053	0.095683673	1.86967E-09	6.68000E-11	2.92E-12
	VTO-2-D3	0.4	0.8	4.968349064	0.089039924	1.80208E-09	6.7200E-11	5.04E-12
	VTO-2-D5	0.4	0.8	5.397467179	0.094473273	1.79094E-09	6.65000E-11	4.31E-12
	VTO-2-E1	0.4	0.4	4.654538971	0.095391822	1.73838E-09	6.60000E-11	1.82E-12
	VTO-2-E2	0.4	0.4	4.59305796	0.092768697	1.79652E-09	2.66000E-10	3.53E-13
	VTO-2-E3	0.4	0.4	5.151567313	0.099352957	1.76018E-09	6.51000E-11	9.13E-13
	VTO-2-F1	0.3	0.8	5.451831753	0.084823971	1.7998E-09	6.68000E-11	3.79E-12
	VTO-2-F2	0.3	0.8	4.553473947	0.081867725	1.78954E-09	9.88000E-11	4.90E-12
	VTO-2-F3	0.3	0.8	4.355900022	0.078139205	1.80895E-09	6.87000E-11	4.75E-12
	VTO-2-G1	0.3	0.4	3.892037372	0.085608133	1.70461E-09	6.57000E-11	1.77E-12

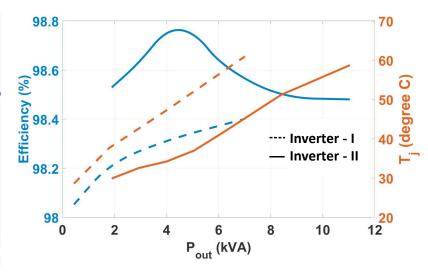


Many Gen-2 MOSFETs from SUNY POLY have been evaluated by OSU

SUNY POLY MOSFETS compare well with commercial devices

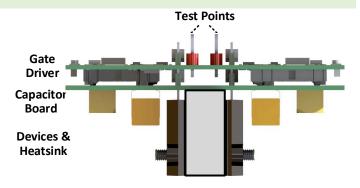

Gen-2 Device Switching Performance Evaluation:

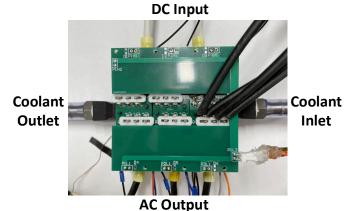

Dovice	20 Ohms R _G				
Device	Switch on (ய)	Switch off (ய)			
4-A1	427.78	257.72			
4-A2	411.70	216.97			
4-N2	420.55	249.65			
4-N3	446.06	256.19			
4-01	528.52	283.03			
4-03	534.20	282.51			
4-S2	486.50	274.48			


Inverter-2 Operation Condition

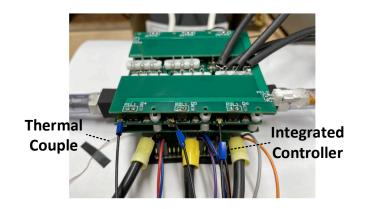
Output Power	11 kVA
Estimated T _J	58.7 °C
Efficiency	98.5%
Operation Duration	10 Min

AC Output

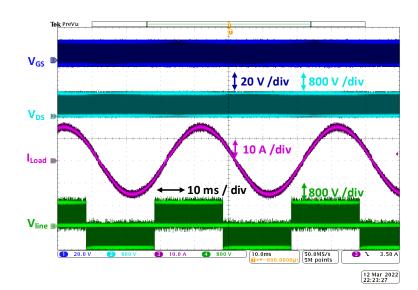


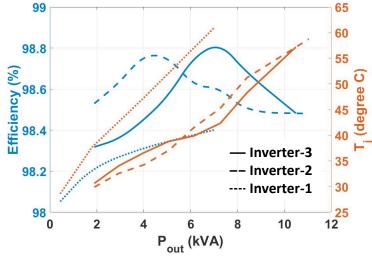


Inverter-3 built and debugged: 11 kVA, average efficiency = 98.5%, power density = 77 kVA/L


Gen-3 Inverter Build with Gen-2 Devices:

Inverter-3 Power Stage and Gate Driver


Inverter-3 Test Setup Top View



Inverter-3 Test Setup Side View

Inverter-3 Operation Condition

Output Power	10.5 kVA
Estimated T _J	57.2 ℃
Efficiency	98.5%
Operation Duration	10 Min

Proposed Future Research

Stand-alone device failure mechanism tests on Gen-3 devices:

Body diode stability, threshold voltage stability, short circuit time and avalanche energy tests will be evaluated

Gen-3 devices will be evaluated with Inverter-3:

Gen-2 devices fully will be evaluated with the Inverter-3 at accelerated temperature and power cycles

Summary

- O Room Temperature Implants can be used w/o body diode degradation for 1200 V MOSFETs. 30% cost reduction.
- O Short Circuit withstand time has been increased to 7 us. 10 us can be achieved in future.
- O Newly designed 10 kVA three-phase inverter-2 delivers higher power density, better reliability and efficiency.
- O Inverter-2 is stressed under full load, the performance of new designed cooling system is improved.
- O Inverter-3 is ready.